Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 207
Filtrar
1.
Front Endocrinol (Lausanne) ; 15: 1359255, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38645427

RESUMO

Diabetic vascular complications are prevalent and severe among diabetic patients, profoundly affecting both their quality of life and long-term prospects. These complications can be classified into macrovascular and microvascular complications. Under the impact of risk factors such as elevated blood glucose, blood pressure, and cholesterol lipids, the vascular endothelium undergoes endothelial dysfunction, characterized by increased inflammation and oxidative stress, decreased NO biosynthesis, endothelial-mesenchymal transition, senescence, and even cell death. These processes will ultimately lead to macrovascular and microvascular diseases, with macrovascular diseases mainly characterized by atherosclerosis (AS) and microvascular diseases mainly characterized by thickening of the basement membrane. It further indicates a primary contributor to the elevated morbidity and mortality observed in individuals with diabetes. In this review, we will delve into the intricate mechanisms that drive endothelial dysfunction during diabetes progression and its associated vascular complications. Furthermore, we will outline various pharmacotherapies targeting diabetic endothelial dysfunction in the hope of accelerating effective therapeutic drug discovery for early control of diabetes and its vascular complications.


Assuntos
Angiopatias Diabéticas , Endotélio Vascular , Humanos , Endotélio Vascular/fisiopatologia , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Angiopatias Diabéticas/metabolismo , Angiopatias Diabéticas/etiologia , Angiopatias Diabéticas/fisiopatologia , Angiopatias Diabéticas/patologia , Animais , Estresse Oxidativo/fisiologia
2.
Enzyme Microb Technol ; 177: 110427, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38518553

RESUMO

d-mannose has been widely used in food, medicine, cosmetic, and food-additive industries. To date, chemical synthesis or enzymatic conversion approaches based on iso/epimerization reactions for d-mannose production suffered from low conversion rate due to the reaction equilibrium, necessitating intricate separation processes for obtaining pure products on an industrial scale. To circumvent this challenge, this study showcased a new approach for d-mannose synthesis from glucose through constructing a phosphorylation-dephosphorylation pathway in an engineered strain. Specifically, the gene encoding phosphofructokinase (PfkA) in glycolytic pathway was deleted in Escherichia coli to accumulate fructose-6-phosphate (F6P). Additionally, one endogenous phosphatase, YniC, with high specificity to mannose-6-phosphate, was identified. In ΔpfkA strain, a recombinant synthetic pathway based on mannose-6-phosphate isomerase and YniC was developed to direct F6P to mannose. The resulting strain successfully produced 25.2 g/L mannose from glucose with a high conversion rate of 63% after transformation for 48 h. This performance surpassed the 15% conversion rate observed with 2-epimerases. In conclusion, this study presents an efficient method for achieving high-yield mannose synthesis from cost-effective glucose.

3.
Talanta ; 274: 125984, 2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38537352

RESUMO

Enantioseparation of amino acids is considered as a challenging task due to the extreme structural similarity of their enantiomers. Herein, teicoplanin was modified with different chemical equivalents of azide groups and attached to silica particles by employing Click Chemistry for resolution of chiral amino acids for the first time. Interestingly, teicoplanin modified with 5-fold the chemical equivalent of azide groups (TK-2 CSP) exhibited superior amino acid separation ability compared to two other columns: one modified with only 1-fold the chemical equivalent of azide groups (TK-1 CSP), and the other modified with excess azide groups (TK-3 CSP). Additionally, the TK-2 CSP exhibited superior enantioselectivity when separating amino acids containing hydrophobic alkyl side chains in comparison to other teicoplanin-based CSPs. The TK-2 CSP column allows the baseline separation of 7 native amino acids. Molecular docking demonstrates that effective enantioseparation arises from distinct patterns of interaction between the host and guest molecules. Moreover, (p-methyl) phenylcarbaminoylated-teicoplanin CSP (TK-4, TK-5 CSP) were prepared by post-modification from TK-1 CSP and TK-2 CSP to isolate Fmoc-modified amino acids. This work explores the impact of various modification methods on the enantioseparation effects of host molecules and paves the way for expanding the potential applications of teicoplanin and macrocyclic glycopeptide molecules.

4.
Theranostics ; 14(5): 2246-2264, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38505620

RESUMO

Aim: Adipose tissue (AT) dysfunction that occurs in both obesity and lipodystrophy is associated with the development of cardiomyopathy. However, it is unclear how dysfunctional AT induces cardiomyopathy due to limited animal models available. We have identified vacuolar H+-ATPase subunit Vod1, encoded by Atp6v0d1, as a master regulator of adipogenesis, and adipose-specific deletion of Atp6v0d1 (Atp6v0d1AKO) in mice caused generalized lipodystrophy and spontaneous cardiomyopathy. Using this unique animal model, we explore the mechanism(s) underlying lipodystrophy-related cardiomyopathy. Methods and Results: Atp6v0d1AKO mice developed cardiac hypertrophy at 12 weeks, and progressed to heart failure at 28 weeks. The Atp6v0d1AKO mouse hearts exhibited excessive lipid accumulation and altered lipid and glucose metabolism, which are typical for obesity- and diabetes-related cardiomyopathy. The Atp6v0d1AKO mice developed cardiac insulin resistance evidenced by decreased IRS-1/2 expression in hearts. Meanwhile, the expression of forkhead box O1 (FoxO1), a transcription factor which plays critical roles in regulating cardiac lipid and glucose metabolism, was increased. RNA-seq data and molecular biological assays demonstrated reduced expression of myocardin, a transcription coactivator, in Atp6v0d1AKO mouse hearts. RNA interference (RNAi), luciferase reporter and ChIP-qPCR assays revealed the critical role of myocardin in regulating IRS-1 transcription through the CArG-like element in IRS-1 promoter. Reducing IRS-1 expression with RNAi increased FoxO1 expression, while increasing IRS-1 expression reversed myocardin downregulation-induced FoxO1 upregulation in cardiomyocytes. In vivo, restoring myocardin expression specifically in Atp6v0d1AKO cardiomyocytes increased IRS-1, but decreased FoxO1 expression. As a result, the abnormal expressions of metabolic genes in Atp6v0d1AKO hearts were reversed, and cardiac dysfunctions were ameliorated. Myocardin expression was also reduced in high fat diet-induced diabetic cardiomyopathy and palmitic acid-treated cardiomyocytes. Moreover, increasing systemic insulin resistance with rosiglitazone restored cardiac myocardin expression and improved cardiac functions in Atp6v0d1AKO mice. Conclusion: Atp6v0d1AKO mice are a novel animal model for studying lipodystrophy- or metabolic dysfunction-related cardiomyopathy. Moreover, myocardin serves as a key regulator of cardiac insulin sensitivity and metabolic homeostasis, highlighting myocardin as a potential therapeutic target for treating lipodystrophy- and diabetes-related cardiomyopathy.


Assuntos
Cardiomiopatias Diabéticas , Insuficiência Cardíaca , Resistência à Insulina , Lipodistrofia , Proteínas Nucleares , Transativadores , ATPases Vacuolares Próton-Translocadoras , Animais , Camundongos , Cardiomiopatias Diabéticas/genética , Modelos Animais de Doenças , Glucose/metabolismo , Resistência à Insulina/genética , Lipídeos , Obesidade/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo , Proteínas Substratos do Receptor de Insulina/metabolismo
5.
Int J Biol Macromol ; 265(Pt 2): 130736, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38479672

RESUMO

The manuscript aimed to study the immune function maintenance effect of Achyranthes bidentata polysaccharides (ABPs). The mice were divided into the control group, cyclophosphamide-induced (CTX) group, and ABPs-treated (ABP) group. The results showed that, compared with the CTX group, ABPs could significantly improve the spleen index and alleviate the pathological changes in immune organs. Ex vivo study of whole spleen cells, the levels of interleukin-2 (IL-2), interleukin-6 (IL-6), interferon-γ (IFN-γ), and tumor necrosis factor-α (TNF-α) were increased. The proliferation of lymphocytes and the proportion of CD3+CD4+ Th cells in peripheral blood mononuclear cells were increased. The transcription of GATA-3, Foxp3, and ROR γ t were decreased, while the transcription of T-bet was increased. The transcriptome sequencing analysis showed that the differentially expressed genes (DEGs) caused by ABPs-treated were mostly downregulated in CTX-induced mice. The Th2-related genes were significantly enriched in DEGs, with representative genes, including Il4, II13, Il9, etc., while increasing the expression of immune effector genes simultaneously, including Ccl3, Ccr5, and Il12rb2. It was suggested that ABPs possibly regulated the balance of cytokines in helper T cells to ameliorate the immune function of CTX-induced mice.


Assuntos
Achyranthes , Citocinas , Camundongos , Animais , Leucócitos Mononucleares , Linfócitos T Auxiliares-Indutores , Polissacarídeos/farmacologia , Ciclofosfamida/efeitos adversos , Receptores de Interleucina-12
6.
Cancer Sci ; 115(4): 1129-1140, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38351514

RESUMO

Oncolytic viruses (OVs) possess the unique ability to selectively replicate within tumor cells, leading to their destruction, while also reversing the immunosuppression within the tumor microenvironment and triggering an antitumor immune response. As a result, OVs have emerged as one of the most promising approaches in cancer therapy. However, the effective delivery of intravenously administered OVs faces significant challenges imposed by various immune cells within the peripheral blood, hindering their access to tumor sites. Notably, neutrophils, the predominant white blood cell population comprising approximately 50%-70% of circulating white cells in humans, show phagocytic properties. Our investigation revealed that the majority of oncolytic vaccinia viruses (VV) are engulfed and degraded by neutrophils in the bloodstream. The depletion of neutrophils using the anti-LY6G Ab (1-A8) resulted in an increased accumulation of circulating oncolytic VV in the peripheral blood and enhanced deposition at the tumor site, consequently amplifying the antitumor effect. Neutrophils heavily rely on PI3K signaling to sustain their phagocytic process. Additionally, our study determined that the inhibition of the PI3Kinase delta isoform by idelalisib (CAL-101) suppressed the uptake of oncolytic VV by neutrophils. This inhibition led to a greater presence of oncolytic VV in both the peripheral blood and at the tumor site, resulting in improved efficacy against the tumor. In conclusion, our study showed that inhibiting neutrophil functions can significantly enhance the antitumor efficacy of intravenous oncolytic VV.


Assuntos
Neoplasias , Terapia Viral Oncolítica , Vírus Oncolíticos , Humanos , Vírus Oncolíticos/fisiologia , Vírus Vaccinia/fisiologia , Neutrófilos/patologia , Terapia Viral Oncolítica/métodos , Fosfatidilinositol 3-Quinases , Neoplasias/patologia , Microambiente Tumoral
7.
Cells ; 12(23)2023 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-38067167

RESUMO

Transforming growth factor-beta 2 (TGF-ß2), an important member of the TGF-ß family, is a secreted protein that is involved in many biological processes, such as cell growth, proliferation, migration, and differentiation. TGF-ß2 had been thought to be functionally identical to TGF-ß1; however, an increasing number of recent studies uncovered the distinctive features of TGF-ß2 in terms of its expression, activation, and biological functions. Mice deficient in TGF-ß2 showed remarkable developmental abnormalities in multiple organs, especially the cardiovascular system. Dysregulation of TGF-ß2 signalling was associated with tumorigenesis, eye diseases, cardiovascular diseases, immune disorders, as well as motor system diseases. Here, we provide a comprehensive review of the research progress in TGF-ß2 to support further research on TGF-ß2.


Assuntos
Fator de Crescimento Transformador beta2 , Fatores de Crescimento Transformadores , Camundongos , Animais , Fator de Crescimento Transformador beta2/genética , Fator de Crescimento Transformador beta2/metabolismo , Diferenciação Celular , Ciclo Celular , Proliferação de Células
8.
Materials (Basel) ; 16(23)2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38068123

RESUMO

In recent years, high entropy alloy (HEA) matrix composites have undergone rapid development. In this work, the effects of different WC contents (10 wt.%, 20 wt.%, and 30 wt.%) on the microstructure, mechanical properties, and wear resistance of FeCoCrNi HEA matrix composites prepared by spark plasma sintering (SPS) were studied. The results show that the WC-HEA composites are mainly composed of an FCC matrix phase (Ni, Fe) and carbide phases (Cr7C3, Co3W3C, WC, etc.). The hardness of the 30 WC-HEA composites was the highest at 459.2 HV, which is 71.2% higher than the 268.3 HV of the pure matrix material. Similarly, the compressive yield strength of the 30 WC-HEA composite was the largest, reaching 1315.1 MPa, which is 112.1% higher than that of the pure matrix material. However, the compression deformation rate of the 30 WC-HEA composite significantly decreased to 16.6%. Under the same dry friction conditions, the addition of an appropriate amount of WC particles can reduce the friction coefficient of the HEA matrix. The wear volume of the composites decreased rapidly with the increase of WC content. The wear volume of 30 WC-HEA was the lowest, only 3.17% of that of the pure matrix material.

9.
Cancers (Basel) ; 15(24)2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38136259

RESUMO

PURPOSE: To eliminate the contaminants of Replication-Competent Adenovirus (RCA) during high titer recombinant oncolytic adenovirus production. METHODS: At first, we detected E1A copy numbers of different sources of 293 cells using Q-PCR, and we screened a subclone JH293-C21 of the JH293 cell line (purchased from ATCC) with lower early region 1A (E1A) copy numbers and higher adenovirus production ability. Then, we deleted the conserved region (CR)2 of the E1A gene in this subclone using the CRISPR-Cas9 system and obtained a stable cell clone JH293-C21-C14 with lower E1A expression, but the RCA formation had no significant reduction. Then, we further deleted the CR2 of JH293-C21-C14 cells with the CRISPR-Cas9 system and obtained a strain of cells named JH293-C21-C14-C28. Finally, we detected the capacity for cell proliferation, adenovirus production, and RCA formation in the production of recombinant adenovirus. RESULTS: The JH293-C21-C14-C28 cells had a similar cell proliferation ability and human adenovirus production as JH293-C21 cells. Most importantly, RCA production in JH293-C21-C14-C28 cells was lower than in JH293-C21 cells. CONCLUSION: Human adenovirus producer cell clone JH293-C21-C14-C28 with CR2 deletion can effectively prevent the RCA production of replication-competent oncolytic adenovirus; this will provide significant advantages in utility and safety in gene therapy.

10.
Animals (Basel) ; 13(19)2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37835628

RESUMO

The giant panda, Ailuropoda melanoleuca, serves as a flagship species for biodiversity conservation, embodying the intersection of ecological, evolutionary, and anthropogenic forces shaping the natural world. Hematological parameters serve as crucial indicators for assessing the physiological status of animals. However, our understanding of blood parameters and hemorheology in captive giant pandas under non-anesthetic conditions is limited. In this study, from September 2018 to August 2020, we collected blood samples from captive giant pandas under non-anesthetic conditions. Twelve captive giant pandas, ranging in age from 2 to 28 years, were divided into three groups based on their age, and the variations in basic blood parameters and hemorheological parameters across four seasons were analyzed. This provided baseline data for future blood sample comparisons in non-anesthetized captive giant pandas. Additionally, we observed seasonal changes in hematological morphology, hemorheology, and serum enzymes. Moreover, seasonality had a regulatory effect on hemorheological parameters and negatively impacted blood viscosity. Age influenced changes in serum enzymes, serum protein content, and serum metabolites, indicating differences in overall metabolic processes among giant pandas of different age groups. Whether factors such as season and climate contribute to environmental stress in captive giant pandas requires further investigation. The findings of this study may help to protect the stability of the giant panda population better and provide a reference for the medical care of captive giant pandas.

11.
Materials (Basel) ; 16(17)2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37687425

RESUMO

High-manganese steel (HMnS) coating was prepared using laser wire feeding cladding technology. Erosion damage behavior and erosion rate of both the HMnS coating and the HMnS substrate were investigated at room temperature using an erosion testing machine. SEM/EDS, XRD, EPMA, and microhardness analyses were used to characterize the cross sections of the coating and matrix, as well as the morphology, phase composition, and microhardness of the eroded surface. The phase composition, orientation characteristics, and grain size of the eroded surfaces of both the coating and substrate were examined by using the EBSD technique. The erosion mechanism under different erosion angles was revealed. By analyzing the plastic deformation behavior of the subsurface of the HMnS coating, the impact hardening mechanism of the high-manganese steel coating during the erosion process was investigated. The results demonstrated that the HMnS coating, prepared through laser wire feeding cladding, exhibited excellent metallurgical bonding with the substrate, featuring a dense microstructure without any cracks. The erosion rate of the coatings was lower than that of the substrate at different erosion angles, with the maximum erosion rate occurring at 35° and 50°. The damage to the coating and substrate under low-angle erosion was primarily attributed to the micro-cutting of erosion particles and a minor amount of hammering. At the 90° angle, the dominant factor was hammering. After erosion, the microhardness of both the coating and substrate sublayer increased to 380HV0.3 and 359HV0.3, respectively. Dendrite segregation, refined grains, low-angle grain boundaries, and localized dislocations, generated by laser wire feeding cladding, contributed to the deformation process of HMnS. These factors collectively enhance the hardening behavior of HMnS coatings, thereby providing excellent erosion resistance.

12.
Adv Sci (Weinh) ; 10(31): e2301300, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37752768

RESUMO

Blood vessels play a role in osteogenesis and osteoporosis; however, the role of vascular metabolism in these processes remains unclear. The present study finds that ovariectomized mice exhibit reduced blood vessel density in the bone and reduced expression of the endothelial glycolytic regulator pyruvate kinase M2 (PKM2). Endothelial cell (EC)-specific deletion of Pkm2 impairs osteogenesis and worsens osteoporosis in mice. This is attributed to the impaired ability of bone mesenchymal stem cells (BMSCs) to differentiate into osteoblasts. Mechanistically, EC-specific deletion of Pkm2 reduces serum lactate levels secreted by ECs, which affect histone lactylation in BMSCs. Using joint CUT&Tag and RNA sequencing analyses, collagen type I alpha 2 chain (COL1A2), cartilage oligomeric matrix protein (COMP), ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1), and transcription factor 7 like 2 (TCF7L2) as osteogenic genes regulated by histone H3K18la lactylation are identified. PKM2 overexpression in ECs, lactate addition, and exercise restore the phenotype of endothelial PKM2-deficient mice. Furthermore, serum metabolomics indicate that patients with osteoporosis have relatively low lactate levels. Additionally, histone lactylation and related osteogenic genes of BMSCs are downregulated in patients with osteoporosis. In conclusion, glycolysis in ECs fuels BMSC differentiation into osteoblasts through histone lactylation, and exercise partially ameliorates osteoporosis by increasing serum lactate levels.


Assuntos
Células-Tronco Mesenquimais , Osteoporose , Humanos , Animais , Camundongos , Histonas/metabolismo , Ácido Láctico/metabolismo , Osteoporose/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células Endoteliais/metabolismo
13.
Heliyon ; 9(7): e17649, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37539178

RESUMO

Bacillus thuringiensis Q1, isolated from the eutrophic waters of the Haihe River in Tianjin, possesses remarkable algae dissolving character. We determined the lytic effect of B. thuringiensis Q1 fermentation broth, and it proved to be pH- and temperature-stable. Then, we investigated the structure of the algicidal compound by high performance liquid chromatography, gas chromatography tandem quadrupole mass spectrometry and fourier transform infrared spectroscopy, and identified as purine-derived C12H15O5N5. To further understand B. thuringiensis Q1, we performed genome sequencing and analysis. The genome was 5341610 bp, with 35.31% GC content. Some elements involved in algicidal activity, such as quorum sensing pathway and ABC transporter were predicted. Our results reveal that B. thuringiensis Q1 can be used for biological control of harmful algal blooms.

14.
Sci Rep ; 13(1): 12722, 2023 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-37543644

RESUMO

Approximately 20% of aged captive giant pandas (Ailuropoda melanoleuca) have cataracts that impair their quality of life. To identify potential biomarkers of cataract formation, we carried out a quantitative proteomics analysis of 10 giant pandas to find proteins differing in abundance between healthy and cataract-bearing animals. We identified almost 150 proteins exceeding our threshold for differential abundance, most of which were associated with GO categories related to extracellular localization. The most significant differential abundance was associated with components of the proteasome and other proteins with a role in proteolysis or its regulation, most of which were depleted in pandas with cataracts. Other modulated proteins included components of the extracellular matrix or cytoskeleton, as well as associated signaling proteins and regulators, but we did not find any differentially expressed transcription factors. These results indicate that the formation of cataracts involves a complex post-transcriptional network of signaling inside and outside lens cells to drive stress responses as a means to address the accumulation of protein aggregates triggered by oxidative damage. The modulated proteins also indicate that it should be possible to predict the onset of cataracts in captive pandas by taking blood samples and testing them for the presence or absence of specific protein markers.


Assuntos
Catarata , Ursidae , Animais , Proteômica , Qualidade de Vida , Catarata/veterinária
15.
Cells ; 12(14)2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37508558

RESUMO

KV channel-interacting proteins (KChIP1-4) belong to a family of Ca2+-binding EF-hand proteins that are able to bind to the N-terminus of the KV4 channel α-subunits. KChIPs are predominantly expressed in the brain and heart, where they contribute to the maintenance of the excitability of neurons and cardiomyocytes by modulating the fast inactivating-KV4 currents. As the auxiliary subunit, KChIPs are critically involved in regulating the surface protein expression and gating properties of KV4 channels. Mechanistically, KChIP1, KChIP2, and KChIP3 promote the translocation of KV4 channels to the cell membrane, accelerate voltage-dependent activation, and slow the recovery rate of inactivation, which increases KV4 currents. By contrast, KChIP4 suppresses KV4 trafficking and eliminates the fast inactivation of KV4 currents. In the heart, IKs, ICa,L, and INa can also be regulated by KChIPs. ICa,L and INa are positively regulated by KChIP2, whereas IKs is negatively regulated by KChIP2. Interestingly, KChIP3 is also known as downstream regulatory element antagonist modulator (DREAM) because it can bind directly to the downstream regulatory element (DRE) on the promoters of target genes that are implicated in the regulation of pain, memory, endocrine, immune, and inflammatory reactions. In addition, all the KChIPs can act as transcription factors to repress the expression of genes involved in circadian regulation. Altered expression of KChIPs has been implicated in the pathogenesis of several neurological and cardiovascular diseases. For example, KChIP2 is decreased in failing hearts, while loss of KChIP2 leads to increased susceptibility to arrhythmias. KChIP3 is increased in Alzheimer's disease and amyotrophic lateral sclerosis, but decreased in epilepsy and Huntington's disease. In the present review, we summarize the progress of recent studies regarding the structural properties, physiological functions, and pathological roles of KChIPs in both health and disease. We also summarize the small-molecule compounds that regulate the function of KChIPs. This review will provide an overview and update of the regulatory mechanism of the KChIP family and the progress of targeted drug research as a reference for researchers in related fields.


Assuntos
Sistema Cardiovascular , Neurônios , Neurônios/metabolismo , Proteínas de Transporte/metabolismo , Proteínas Interatuantes com Canais de Kv/genética , Proteínas Interatuantes com Canais de Kv/metabolismo , Membrana Celular/metabolismo , Sistema Cardiovascular/metabolismo
16.
Mol Ther ; 31(9): 2575-2590, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37408308

RESUMO

Tertiary lymphoid structures (TLSs) in tumor tissues facilitate immune cell trafficking and cytotoxicity, which benefits survival and favorable responses in immune therapy. Here, we observed a high correlation of tumor necrosis factor superfamily member 14 (LIGHT) expression with TLS signature genes, which are all markers for immune cell accumulation and better prognosis, through retrieving RNA sequencing (RNA-seq) data from patients with cancer, suggesting the potential of LIGHT in reconstituting a high immune-infiltrated tumor microenvironment. Accordingly, LIGHT co-expressed chimeric antigen receptor T (LIGHT CAR-T) cells not only showed enhanced cytotoxicity and cytokine production but also improved CCL19 and CCL21 expression by surrounding cells. And the supernatant of LIGHT CAR-T cells promoted T cell migration in a paracrine manner. Furthermore, LIGHT CAR-T cells showed superior anti-tumor efficacy and improved infiltration in comparison with conventional CAR-T cells in immunodeficient NSG mice. Accordingly, murine LIGHT-OT-1 T cells normalized tumor blood vessels and enforced intratumoral lymphoid structures in C57BL/6 syngeneic tumor mouse models, implying the potential of LIGHT CAR-T in clinical application. Taken together, our data revealed a straightforward strategy to optimize trafficking and cytotoxicity of CAR-T cells by redirecting TLSs through LIGHT expression, which has great potential to expand and optimize the application of CAR-T therapy in solid tumors.


Assuntos
Receptores de Antígenos Quiméricos , Membro 14 da Superfamília de Ligantes de Fatores de Necrose Tumoral , Animais , Camundongos , Linhagem Celular Tumoral , Imunoterapia Adotiva , Camundongos Endogâmicos C57BL , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T , Microambiente Tumoral/genética
17.
Metab Eng ; 78: 128-136, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37286072

RESUMO

L-leucine is an essential amino acid widely used in food and pharmaceutical industries. However, the relatively low production efficiency limits its large-scale application. In this study, we rationally developed an efficient L-leucine-producing Escherichia coli strain. Initially, the L-leucine synthesis pathway was enhanced by overexpressing feedback-resistant 2-isopropylmalate synthase and acetohydroxy acid synthase both derived from Corynebacterium glutamicum, along with two other native enzymes. Next, the pyruvate and acetyl-CoA pools were enriched by deleting competitive pathways, employing the nonoxidative glycolysis pathway, and dynamically modulating the citrate synthase activity, which significantly promoted the L-leucine production and yield to 40.69 g/L and 0.30 g/g glucose, respectively. Then, the redox flux was improved by substituting the native NADPH-dependent acetohydroxy acid isomeroreductase, branched chain amino acid transaminase, and glutamate dehydrogenase with their NADH-dependent equivalents. Finally, L-leucine efflux was accelerated by precise overexpression of the exporter and deletion of the transporter. Under fed-batch conditions, the final strain LXH-21 produced 63.29 g/L of L-leucine, with a yield and productivity of 0.37 g/g glucose and 2.64 g/(L h), respectively. To our knowledge, this study achieved the highest production efficiency of L-leucine to date. The strategies presented here will be useful for engineering E. coli strains for producing L-leucine and related products on an industrial scale.


Assuntos
Corynebacterium glutamicum , Engenharia Metabólica , Escherichia coli/genética , Escherichia coli/metabolismo , Leucina/genética , Leucina/metabolismo , Vias Biossintéticas , Glucose/genética , Glucose/metabolismo , Corynebacterium glutamicum/metabolismo
18.
Science ; 380(6648): eabl4997, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37262139

RESUMO

Hybridization is widely recognized as promoting both species and phenotypic diversity. However, its role in mammalian evolution is rarely examined. We report historical hybridization among a group of snub-nosed monkeys (Rhinopithecus) that resulted in the origin of a hybrid species. The geographically isolated gray snub-nosed monkey Rhinopithecus brelichi shows a stable mixed genomic ancestry derived from the golden snub-nosed monkey (Rhinopithecus roxellana) and the ancestor of black-white (Rhinopithecus bieti) and black snub-nosed monkeys (Rhinopithecus strykeri). We further identified key genes derived from the parental lineages, respectively, that may have contributed to the mosaic coat coloration of R. brelichi, which likely promoted premating reproductive isolation of the hybrid from parental lineages. Our study highlights the underappreciated role of hybridization in generating species and phenotypic diversity in mammals.


Assuntos
Evolução Biológica , Quimera , Hibridização Genética , Pigmentação , Presbytini , Animais , China , Genoma , Genômica , Presbytini/anatomia & histologia , Presbytini/genética , Isolamento Reprodutivo , Variação Biológica da População , Pigmentação/genética
19.
Natl Sci Rev ; 10(4): nwac174, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37124465

RESUMO

Highly specialized myrmecophagy (ant- and termite-eating) has independently evolved multiple times in species of various mammalian orders and represents a textbook example of phenotypic evolutionary convergence. We explored the mechanisms involved in this unique dietary adaptation and convergence through multi-omic analyses, including analyses of host genomes and transcriptomes, as well as gut metagenomes, in combination with validating assays of key enzymes' activities, in the species of three mammalian orders (anteaters, echidnas and pangolins of the orders Xenarthra, Monotremata and Pholidota, respectively) and their relatives. We demonstrate the complex and diverse interactions between hosts and their symbiotic microbiota that have provided adaptive solutions for nutritional and detoxification challenges associated with high levels of protein and lipid metabolisms, trehalose degradation, and toxic substance detoxification. Interestingly, we also reveal their spatially complementary cooperation involved in degradation of ants' and termites' chitin exoskeletons. This study contributes new insights into the dietary evolution of mammals and the mechanisms involved in the coordination of physiological functions by animal hosts and their gut commensals.

20.
ACS Appl Mater Interfaces ; 15(20): 24459-24469, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37184544

RESUMO

Carbon materials have been the most common anodes for sodium-ion storage. However, it is well-known that most carbon materials cannot obtain a satisfactory rate performance because of the sluggish kinetics of large-sized sodium-ion intercalation in ordered carbon layers. Here, we propose an integration of co-intercalation and adsorption instead of conventional simplex-intercalation and adsorption to promote the rate capability of sodium-ion storage in carbon materials. The experiment was demonstrated by using a typical carbon material, reduced graphite oxide (RGO400) in an ether-solvent electrolyte. The ordered and disordered carbon layers efficiently store solvated sodium ions and simplex sodium ions, which endows RGO400 with enhanced reversible capacity (403 mA h g-1 at 50 mA g-1 after 100 cycles) and superior rate performance (166 mA h g-1 at 20 A g-1). Furthermore, a symmetric sodium-ion capacitor was demonstrated by employing RGO400 as both the anode and cathode. It exhibits a high energy density of 48 W h g-1 at a very high power density of 10,896 W kg-1. This work updates the sodium-ion storage mechanism and provides a rational strategy to realize high rate capability for carbon electrode materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...